Short-term forecasting of total number of reported COVID-19 cases in South Africa - A Bayesian temporal modelling approach

Belay B. Yimer and Ziv Shkedy

Centre for epidemiology Versus arthritis

University of Manchester

SUSAN Conference 2021, Kenya

The University of Manchester

Introduction

- Reliable and accurate short-term forecasts of COVID-19 cases are critical
 - to understand the progress of the pandemic in a country and
 - to evaluate the impact of intervention measures in controlling the COVID-19 outbreak.

Reported COVID 19 cases in South Africa (12 March 2020-27 February 2021

Aim

- Can we predict the cumulative number of cases *k* days a head?
- How can we measure the performance/accuracy of our prediction?

Modelling approach

 We consider a Negative binomial distribution for modelling the number of daily COVID 19 cases to account for possible overdispersion.

 $Y_t \sim \text{NB}(\mu_t, \delta)$

- We consider four temporal models to capture the trend over time
- Models were fitted within the Bayesian framework using *INLA* assuming non informative priors

Model AR(1) $\log(\mu_t) = \alpha + u_t,$ $u_1 \sim N(0, \tau_u(1-\rho^2)^{-1}),$ $u_t = \rho u_{t-1} + \epsilon_t, \quad t = 2, \dots, T,$ $\epsilon_t \sim N(0, \tau_\epsilon),$ AR(2) $\log(\mu_t) = \alpha + u_t,$ $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \epsilon_t, \quad t = 2, \dots, T,$ $\epsilon_t \sim N(0, \tau_\epsilon),$ RW(1) log(μ_t) = $\alpha + u_t$, $u_t - u_{t-1} \sim N(0, \tau_u), \quad t = 2, \dots, T,$ RW(2) log(μ_t) = $\alpha + u_t$, $u_t - 2u_{t-1} + u_{t-2} \sim N(0, \tau_u), \quad t = 3, \dots, T.$

Model selection

Algorithm 1 Rolling origin cross-validation (ROCV).

- 1: Store the data starting day 1 to day T.
- 2: Estimation period: initialize the number of initial observation for estimating the model $\left(k\right)$
- 3: Prediction period: Set the number of days a head where the prediction is sought (w)
- 4: while $k + w \leq T$ do
- 5: Fit the proposed models using observations t = 1, ..., t = k
- 6: Hold out the next k + 1, ..., k + w observations
- 7: Discard the remaining T (k + w) observations
- 8: Compute predictive error metrics
- a) Compute DIC and WAIC in the estimation period,

b)
$$MAE = \frac{\sum_{t=k+1}^{k+w} |C_t - C_t^*|}{w},$$

c) $MAPE = \frac{1}{w} \sum_{t=k+1}^{k+w} |\frac{C_t - C_t^*}{C_t}|,$
d) $Chi - Squared = \sum_{t=k+1}^{k+w} \frac{(C_t - C_t^*)}{C_t},$

where C_t and C_t^{\star} denotes the observed and predicted cumulative cases at time t, respectively.

9: k = k + 110: end while

Model selection

Algorithm 2 Modified rolling origin cross-validation (MROCV).

- 1: Store the data starting day 1 to day T.
- 2: Estimation period: initialize the number of initial observation for estimating the model (k)

3: while $w \le 10$ do

- 4: while $k + w \leq T$ do
- 5: Fit the proposed models using observations t = 1, ..., t = k
- 6: Prediction period: Hold out the next k + 1, ..., k + w observations
- 7: Discard the remaining T (k + w) observations
- 8: Store predicted and observed cumulative cases (C_t, C_t^*)

9: AE:

 $AE_{kw} = |C_{k+w} - C_{k+w}^*|,$

10: APE:

$$APE_{kw} = \left|\frac{C_{k+w} - C_{k+w}^{\star}}{C_{k+w}}\right|,$$

11: OE2:

$$OE2_{kw} = \frac{(C_{k+w} - C_{k+w}^*)^2}{C_{k+w}}$$

12: k = k + 1

13: end while

14: Compute $MAE_w = \frac{\sum AE_{kw}}{K}$, $MAPE_w = \frac{1}{K}\sum APE_{kw}$, and $Chi - Squared_w = \sum OE2_{kw}$, where K is the number of estimation period.

15: w = w + 1

16: end while

One day a head
Two day a head -
Three day a head -

Application

- The four models described in the previous section were fitted to the daily reported new COVID-19 cases.
 - Estimation period fixed from 2/03/2020 to 07/02/2021
 - All models considered appear to fit the observed data (within the estimation period) well.
 - AR(1), AR(2), and RW(1) models tend overfit the data
 - *RW*(2) model produces a smooth line as predicted model

Application

- We produce 10-days ahead forecasting, up to 17/02/2021, of the cumulative COVID-19 cases for each model.
 - The AR(1), AR(2), and RW(1) models performed well for the first three forecasting days and overestimated the cumulative cases from day three onward.
 - The RW(2) model performed well, showing a consistent prediction performance throughout the forecasting period

Prediction performance – Algorithm (1)

Estimation/ Prediction			
set	Estimation Period	Prediction Period	
1	12/03/2020-07/02/2021	08/02/2021-17/02/2021	
2	12/03/2020-08/02/2021	09/02/2021-18/02/2021	
3	12/03/2020-09/02/2021	10/02/2021-19/02/2021	
4	12/03/2020-10/02/2021	11/02/2021-20/02/2021	
5	12/03/2020-11/02/2021	12/02/2021-21/02/2021	
6	12/03/2020-12/02/2021	13/02/2021-22/02/2021	
7	12/03/2020-13/02/2021	14/02/2021-23/02/2021	
8	12/03/2020-14/02/2021	15/02/2021-24/02/2021	
9	12/03/2020-15/02/2021	16/02/2021-25/02/2021	
10	12/03/2020-16/02/2021	17/02/2021-26/02/2021	
11	12/03/2020-17/02/2021	18/02/2021-27/02/2021	

Prediction performance – Algorithm (2)

Conclusion

- We modelled COVID-19 cases in South Africa at the national level using publicly available data from 12 March 2020 to 27 February 2021.
- We have evaluated four widely used temporal models for forecasting confirmed cases of COVID-19 for South Africa.
- The analysis was based on readily accessible, publicly available data that is updated in real-time.
- The statistical methods applied are implemented using o-the-shelf open-source software and are not dependent on any assumptions regarding COVID-19 transmission dynamics.
- We have shown the usefulness of established temporal models to provide short term forecasts of the cumulative COVID-19 cases.
- Such models could help in decision-making when knowledge regarding factors affecting transmission-dynamics of the disease is limited.

R code

The source code for producing the results presented is available at

<u>belayb/COVIDincidenceSA: Modelling COVID-19 incidence and forecasting - South Africa</u> (github.com)